
SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Why optimize your code!
!•  Computer time is a limited resource. Time on XSEDE systems is free**,

but awarded on a competitive basis – very few big users get everything
they want. Time on Amazon Web Services or other cloud providers
costs real dollars. Maintaining your own cluster/workstation requires
both time and money***.!

•  Optimizing your code will reduce the time to solution. Challenging
problems become doable. Routine calculations can be done quickly
enough to allow time for exploration and experimentation. In short, you
can get more science done in the same amount of time.!

•  Even if computer time was free, running a computation still consumes
energy. There’s a lot of controversy over how much energy is used by
computers and data centers, but estimates are in the 2-10% range and
growing.!

** XSEDE resources are not really free since someone has to pay. The NSF directly, tax payers
indirectly. Average US citizen paid about $0.07 to deploy and operate Gordon over it’s lifetime!

*** Of course, time is money when you consider opportunity costs!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

… but I have a parallel code and processors are getting
faster, cheaper and more energy efficient!

!
•  There will always be a more challenging problem that you want to solve

in a timely manner!
•  Higher resolution (finer grid size, shorter time step)!
•  Larger systems (more atoms, molecules, particles …)!
•  More accurate physics!
•  Longer simulations !
•  More replicates, bigger ensembles, better statistics!

•  Most parallel applications have a limited scalability!
•  Until we have some Earth shattering breakthroughs, there will always

be limitations on availability of computation and energy consumption
will be an important consideration!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Guidelines for software optimization!
!The prime directive of software optimization: Don’t break anything!!

Getting correct results slowly is much better than getting wrong results quickly!
!
•  Don’t obfuscate your code unless you have a really good reason (e.g. kernel in a

heavily used code accounts for a lot of time)!
•  If you do choose to write obfuscated code, clearly document your work!
•  Know when to start, know when to stop!
•  Maintain portability. If you need to include modifications that are architecture or

environment specific, use preprocessor directives to isolate key code!

•  Profile, optimize, repeat – new hotspots may emerge!
•  Take advantage of optimized libraries. Unless you are a world-class expert, you

are not going to write a faster matrix multiply, FFT, eigenvalue solver, etc.!
•  Understand the capabilities and limitations of your compiler. Use compiler

options (e.g. -O3, -xHost) for best performance!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Intel’s Math Kernel Library (MKL)!
!

Highly optimized mathematical library. Tuned
to take maximum advantage of Intel
processors. This is my first choice when
running on Intel hardware.!

Linear algebra (including implementations of
BLAS and LAPACK), eigenvalue solvers,
sparse system solvers, statistical and math
functions, FFTs, Poisson solvers, non-linear
optimization!

Many of the routines are threaded. Easy way
to get shared memory parallelism for running
on a single node.!

Easy to use. Just build executable with -mkl
flag and add the appropriate include
statement to your source (e.g. mkl.h)!

https://software.intel.com/en-us/mkl_11.1_ref!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

MKL vs. non-MKL example!
!•  Copy the lineq_mkl.c and lineq_nomkl.c files to your home directory.

The program generates a random vector and matrix of rank N, calls the
linear solver DGESV (Ax=b) then reports run time.!

•  Compile using the following commands 
 
icc -O3 -o lineq_mkl lineq_mkl.c -mkl  
 
icc -O3 -o lineq_nomkl lineq_nomkl.c -L/opt/lapack/intel/lib -lblas  
-llapack -lm!

•  On a Gordon compute node, set OpenMP threads to 1, run the two
programs using a variety of problem sizes and note run times. Repeat
using 2, 4, 8 and 16 threads 
 
module load lapack 
export OMP_NUM_THREADS=1  
./lineq_mkl 3000 
./lineq_nomkl 3000!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Know when to start / stop!
!Knowing when to start!

•  Is the code used frequently/widely enough to justify the effort?!
•  Does the code consume a considerable amount of computer time?!
•  Is time to solution important?!
•  Will optimizing your code help you solve new sets of problems?!

Knowing when to stop!
•  Have you reached the point of diminishing returns?!
•  Is most of the remaining time spent in routines beyond your control?!
•  Will your limited amount of brain power and/or waking hours be better

spent doing your research than optimizing the code?!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Know when to start / stop!
!

Jackson Pollock!
No. 5, 1948!

(done?)!

Leonardo da Vinci!
Mona Lisa!

(done!)!

Sometimes you’ll need to
use your judgment!
!

•  Authors of heavily used
community codes in
domains such as climate
and weather modeling,
computational chemistry
and QCD should go to
extreme measures to
optimize performance!

•  Authors of lab-specific and
one-off applications should
stop sooner!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility of optimized codes!
!

•  Bit-wise reproducibility means obtaining exactly the same binary
(internal machine representation) results 
!

•  An ASCII dump (formatted output) may look the same but can hide
differences in the floating point representation if too few significant
digits are printed  
!

•  Think about whether or not you really need bit-wise reproducibility and
under which conditions (compiler, hardware, processor count). Can be
done, but not without tradeoffs. 
!

•  Decide how much accuracy is needed. Is it acceptable to get a result
that is correct to within a specified tolerance? Consider constructing a
test suite that can be used to test reproducibility.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Confirming bit-wise reproducibility!
!md5sum can confirm that results are exactly the same. Uses a 128-bit

cryptographic hash function to generate digital fingerprint of file. Hash collisions
are possible, but probability is astronomically low.!
!
$ ls -lh *!
-rw-r--r-- 1 sinkovit use300 6.1M May 2 08:31 fleeting_ref_AAPL_050610.csv!
-rw-r--r-- 1 sinkovit use300 101M May 2 08:31 msg_AAPL_050610.csv!
-rw-r--r-- 1 sinkovit use300 83M May 2 08:31 settled_AAPL_050610.csv!
!
$ md5sum *!
d7dcee609d3536d072875856d1a0c253 fleeting_ref_AAPL_050610.csv!
f8655644fb37eedd1c30b8e58fe79d50 msg_AAPL_050610.csv!
b77eaed47a1dc94eb75efb1d2a32432d settled_AAPL_050610.csv!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Note on md5sum!
!•  The MD5 algorithm should not be used in cases where security is an issue

(digital signatures or public key certificates)!
•  MD5 is perfectly fine for non-secure applications where tampering would not be

suspected (file transfers, confirming program output)!
•  More secure hash functions exist (SHA-256 or SHA-512), but they’ll take longer!
!

utility! time! hash!

md5sum! 13.12! cbf7e312c83db7d2d27ca3f571ee0de3!

sha256sum! 41.27! 44b2335f1d98d5b06f28e95cc46c238a6963140b4f1
83f9223b1dc46c81f5673!

sha512sum! 28.90!
6d09ec0c4d6db9ff64a2f9633947412ece884b92680
60c6a40c8056e38c8d5ded4d3d13c8840592db9efc
3dccbce22ac5a673993f56e2f6e1af0cb57690f447e!

Timings obtained on Gordon compute node (Intel E5-2670 2.6 GHz) using 6.1 GB ASCII file!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Looking for differences in ASCII files!
!md5sum is a great way to tell if files are identical, but is useless if there are even

small differences between runs. The Linux diff utility can be used instead, provides
details of the differences.!
!
$ wc -l file1 file2!
 464691 file1 !Files are exactly the same length (good sign)!
 464691 file2!
!
$ md5sum file1 file2!
13b71bb7b8274c1657b815735046e411 file1 ! !Ugh, different md5sums!
0234c9a3dbc4b94ade7822edc3ae2f61 file2!
!
$ diff file1 file2!
1c1!
< Fri Jun 27 12:36:02 PDT 2014 !Different time stamps!
> Fri Jun 27 12:35:46 PDT 2014!
464691c464691!
< Run time: 1236.78 seconds !Different run times!
> Run time: 1234.56 seconds!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Looking for differences in ASCII files!
!If the acceptable changes (e.g. time stamps, run times, node names) between

output files occur in predictable formats and or locations, we can make clever use of
sed, grep, head, tail and other utilities to build more complex tests!
!
$ diff file1 file2!
1c1!
< Fri Jun 27 12:36:02 PDT 2014 !First line of output!
> Fri Jun 27 12:35:46 PDT 2014!
464691c464691!
< Run time: 1236.78 seconds !Last line of output / only line containing string ‘Run time’!
> Run time: 1234.56 seconds!
!
$ sed -n '1!p' file1 | grep -v 'Run time' | md5sum !
3169c7872c74b2e1593dcde1f4d7f2be -!
$ sed -n '1!p' file2 | grep -v 'Run time' | md5sum !
3169c7872c74b2e1593dcde1f4d7f2be -!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Using diff on directories!
!We can use diff to recursively compare the contents of entire directories as long as

the files are named identically. !
!
-r = recursive --brief = only report whether files differ!
!
This will work for both plain text and binary files!
!
$ diff -r --brief DIR1/ DIR2/!
$! ! !no output – directory contents identical!
!
$ diff -r --brief DIR1 DIR2!
Only in DIR2: file1 ! ! !Unique to DIR2!
Only in DIR1: file2 ! ! !Unique to DIR1!
Files DIR1/fleeting_ref_AAPL_050610.csv !Files differ – no details provided!
and DIR2/fleeting_ref_AAPL_050610.csv differ!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

A very brief intro to sed, grep, head, tail!
!grep prints the lines in a file that

match (or don’t match) a particular
pattern!
!
$ grep bird file1 # Has bird!
line2 bird dog cat!
line3 fish cat bird!
$ grep -v dog file1 # Not has dog!
line3 fish cat bird!
!
!head prints the top of a file!
!
$ head -n1 file1 # First line!
line1 dog fish cat!
$ head -n2 file1 # First two lines!
line1 dog fish cat!
line2 bird dog cat!
!
!

tail prints the bottom of a file!
!
$ tail -n1 file1 # Last line!
line3 fish cat bird!
$ tail -n2 file1 # Last two lines !
line2 bird dog cat!
line3 fish cat bird!
!
!
!

sed is a powerful stream editor that
(among many other capabilities)
selects lines by record number!
!
$ sed -n ‘2p’ file1 # Line 2!
line2 bird dog cat!
$ sed -n ‘2!p’ file1 # All but line 2!
line1 dog fish cat!
line3 fish cat bird!
!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility in integer/string codes!
!Integers and characters are represented exactly. The same program should give the

same results on any system using any compiler. When working with integers, just
need to be aware of a few potential gotchas when modifying your software!
!
(1) Division results are truncated. As a consequence, some basic arithmetic
identities are not integer math identities!

 
(a/b) + (c/d) ≠ (ad + bc)/bd"
(2/3) + (5/2) = 0 + 2 = 2"
(2�2 + 5�3)/(2�3) = 19/6 = 3"

!
(2) Avoid modifications to order of operations that might result in overflows 
!

Σ(all terms) =(?) Σ(neg terms) + Σ(pos terms)"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility in floating point codes!
!FP operations are subject to round-off error and seemingly trivial code modifications

or changes to run conditions can change the answers. If any of the following lead to
significantly different results, you should re-examine your algorithms!
!
(1) Arithmetic identities that are not necessarily floating point identities.!

 
(a + b) + c ≠ a + (b + c)  
(a/b) + (c/d) ≠ (ad + bc)/bd"
sqrt(sqrt(a)) ≠ a0.25"

!
(2) Software parallelization, particularly involving global reduction operations (e.g.
summing over elements of an array). The exact answers may depend on the
number of threads and/or processes.!
!
(3) Aggressive compiler optimization (typically -O3 and higher) may lead to code
modifications that do not preserve bit-wise reproducibility 
!
(4) Running on different processor architectures or linking different library versions!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Random number generation!
!Many applications rely on random number generators to set the initial conditions or

perform Monte Carlo simulations. If developing your own software, do yourself a big
favor and provide the capability to set the seed.!
!
Can make this an optional argument that overrides the default behavior. Otherwise,
you’ll never be sure that the modified version of the software is correct!
!

!$./a.out -i infile -o outfile … [-seed 1234]!
!
Seems obvious, but surprising how many code implement something like the
following without documenting behavior!
!

!srandom(time(0))"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Registers!

L1 cache!

L2 cache!

L3 cache!

DRAM!

O(10 KB)!

O(100 KB)!

O(10 MB)!

O(10-100 GB)!

O(ns)!

O(10 ns)!

O(10 ns)!

O(100 ns)!

Disk!O(TB - PB)!O(100 µs SSD) 
O(ms HDD)!

< ns!

Memory hierarchy!
!

Fast 
Small  
$$$$!
!

Slow  
Large  
Cheap!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Cache essentials!
!

Temporal locality: Data that was recently accessed is likely to be used
again in the near future. To take advantage of temporal locality, once data
is loaded into cache, it will generally remain there until it has to be purged
to make room for new data. Cache is typically managed using a variation
of the Least Recently Used (LRU) algorithm.!
!
Spatial locality: If a piece of data is accessed, it’s likely that neighboring
data elements in memory will be needed. To take advantage of spatial
locality, cache is organized into lines (typically 64 B) and an entire line is
loaded at once.!
!
Our goal in cache level optimization is very simple – exploit the principles
of temporal and spatial locality to minimize data access times!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

One-dimensional arrays!
!

One-dimensional arrays are stored as blocks of contiguous data in memory.!
int *x, n=100;"
x = (int *) malloc(n * sizeof(int))"

!

Cache optimization for 1D arrays is pretty straightforward and you’ll
probably write optimal code without even trying. Whenever possible, just
access the elements in order.!

for (int i=0; i<n; i++) {"
 x[i] += 100;"
}"

!

x[3]	

x[2]	

 x[4]	

 x[5]	

 x[6]	

x[1]	

x[0]	

 …	

0	

 4	

 8	

 12	

 16	

 20	

 24	

 relative address	

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

One-dimensional arrays!
!What is our block of code doing with regards to cache?!
for (int i=0; i<n; i++) {"
 x[i] += 100;"
}"

!
Assuming a 64-byte cache line and 4-byte integers:!

1.  Load elements x[0] through x[15] into cache!
2.  Increment x[0] through x[15]!
3.  Load elements x[16] through x[31] into cache!
4.  Increment elements x[16] through x[31]!
5.  …!

In reality, the processor will do really clever things like recognizing the
pattern of data access and prefetching the next cache line before it is
needed.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Multidimensional arrays!
!

Row-major order: Last or rightmost index varies the fastest. Used in
Python, Mathematica and C/C++!

From the computer’s point of view, there is no such thing as a two-
dimensional array. This is just syntactic sugar provided as a convenience
to the programmer. Under the hood, array is stored as linear block of data!
!

1! 2! 3!
4! 5! 6!

1! 4! 2! 5! 3! 6!

1! 2! 3!
4! 5! 6!

1! 2! 3! 4! 5! 6!

Column-major order: First or leftmost index varies the fastest. Used
in Fortran, R, MATLAB and Octave (open-source MATLAB clone)!

	

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Multidimensional arrays!
!

Properly written Fortran code!
do j=1,n ! Note loop nesting"
 do i=1,n"
 z(i,j) = x(i,j) + y(i,j)"
 enddo"
enddo"

Properly written C code!
for (i=0; i<n; i++) { // Note loop nesting"
 for (j=0; j<n; j++) {"
 z[i][j] = x[i][j] + y[i][j]"
 }"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Matrix addition exercise!
!•  Copy the dmadd_good.f and dmadd_bad.f files to your home directory.

Programs perform 2D matrix addition using optimal/non-optimal loop
nesting. Inspect the code and make sure you understand logic.!

•  Compile programs using the ifort compiler with default optimization
level and explicitly stating -O0, -O1, -O2 and -O3!

•  On a Gordon compute node, run with matrix ranks 20,000, 30,000 and
40,000 (Programs accept single command line argument specifying the
matrix rank)!

•  Examples: (feel free to use your own naming conventions)!
•  ifort -o dmadd_good_default dmadd_good.f!
•  ifort -o dmadd_bad_O3 -O3 dmadd_bad.f!
•  ./dmadd_good_default 20000!
•  ./dmadd_bad_O3 30000!

•  Keep track of the run times (reported by code)!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Matrix addition exercise!
!

•  Try to explain the timings. Under what optimization levels was
there a big difference between the optimal/non-optimal versions
of the codes?!

•  What do you think the compiler is doing?!
•  Why do we have that mysterious block of code after the matrix

addition? What possible purpose could it serve?!
•  Can you make an educated guess about the default optimization

level? !

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop fusion!
!One of the most basic loop-level optimizations is loop fusion. Two or more

loops with the same range of iterations are combined into a single loop!

for (int i=0; i<n; i++) {"
 z[i] = x[i] + y[i]"
}"
for (int i=0; i<n; i++) {"
 w[i] = x[i] * y[i]"
}"

for (int i=0; i<n; i++) {"
 z[i] = x[i] + y[i]"
 w[i] = x[i] * y[i]"
}"

Loop fusion is hit or miss. If you really* understand computer architecture,
you can probably figure out which is optimal. Need to balance cache reuse
and complexity of loop body. My suggestion is to just try both and see
which one is faster. Your compiler can do this automatically, but certain
code features will prevent this (e.g. print statement between loops).!

* By really, I mean really, really, really!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop splitting!
!Loop splitting is the opposite of loop fusion. A single loop is split into two or

more loops!

for (int i=0; i<n; i++) {"
 z[i] = x[i] + y[i]"
}"
for (int i=0; i<n; i++) {"
 w[i] = x[i] * y[i]"
}"

for (int i=0; i<n; i++) {"
 z[i] = x[i] + y[i]"
 w[i] = x[i] * y[i]"
}"

Like loop fusion, this optimization is hit or miss. Your compiler can often
figure out which is optimal. Keep in mind that some loops are too complex
for the compiler to analyze and you may need to manually split the loop.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization!
!Pull repeated calculation out of loop and use the pre-calculated result in its

place.!

sqrtc = sqrt(c);"
for (int i=0; i<n; i++) {"
 z[i] = x[i] + sqrtc;"
}"

Compilers can often do this for you, particularly if the loops are simple. Still
suggest that you do this yourself and be guaranteed that the optimization
will be done. No real downsides.!

for (int i=0; i<n; i++) {"
 z[i] = x[i] + sqrt(c);"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization!
!When working with nested loops, the invariants will sometime be less

obvious and may even be a vector of results. !

for (i=0; i<nx; i++) {"
 for (j=0; j<ny; j++) {"
 for (k=0; k<nz; k++) {"
 x2y2 = x[i]*x[i] + y[j]*y[j];"
 z2 = z[k] * z[k];"
 res[i][j][k] = exp(-a * z2) * sqrt(x2y2);"
 }"
 }"
}"
"
"

x2y2 does not
depend on index k"

sqrt(-b*x2y2)
does not depend
on index k"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization!
!1.  Moved calculation of x2 to outermost loop nesting  

Evaluated nx times instead of nx*ny*nz!
2.  Moved calculation of sqrt(x2+y2) out one level of nesting  

Evaluated nx*ny times rather than nx*ny*nz!

for (i=0; i<nx; i++) {"
 x2 = x[i]*x[i];"
 for (j=0; j<ny; j++) {"
 x2y2 = x2 + y[j]*y[j];"
 sqrtx2y2 = sqrt(x2y2);"
 for (k=0; k<nz; k++) {"
 z2 = z[k] * z[k];"
 res[i][j][k] = exp(-a * z2) * sqrtx2y2;"
 }"
 }"
}"
"
"

z2 does not
depend on indices
i or j"

exp(-a*z2) does
not depend on
indices i or j"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization!
!Pre-calculate vector of exp(-a * z2) results and reuse for every set of (i,j).

Reduces number of exponential evaluations to nz from nx*ny*nz!

for (k=0; k<nz; k++) {"
 zterm[k] = exp(-a * z[k]*z[k]);"
}"
"
for (i=0; i<nx; i++) {"
 x2 = x[i]*x[i];"
 for (j=0; j<ny; j++) {"
 x2y2 = x2 + y[j]*y[j];"
 expx2y2 = exp(-b * x2y2);"
 for (k=0; k<nz; k++) {"
 res[i][j][k] = zterm[k] * sqrt2y2;"
 }"
 }"
}"
"
"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization!
!If out result involved exp(-b * (x2+y2)) instead of sqrt(x2+y2), we could have

taken things one step further by pre-calculating three vectors. Innermost
loop would only involve multiplications!

for (i=0; i<nx; i++) { xterm[i] = exp(-b * x[i]*x[i]); }"
for (j=0; j<ny; j++) { yterm[j] = exp(-b * y[j]*y[j]); }"
for (k=0; k<nz; k++) { zterm[k] = exp(-a * z[k]*z[k]); }"
"
for (i=0; i<nx; i++) {"
 for (j=0; j<ny; j++) {"
 for (k=0; k<nz; k++) {"
 res[i][j][k] = xterm[i] * yterm[j] * zterm[k];"
 }"
 }"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop peeling!
!In a loop peeling optimization, one or more iterations are pulled out of the

loop. Avoids unnecessary calculations associated with special iterations;
also allows fusion of loops with slightly different iteration ranges!

The example above illustrates how peeling off the first iteration of the first
loop (i=0) both avoids special case (product instead of sum) and allows
fusion with the following loop !

for (int i=0; i<n; i++) {"
 if (i == 0) {"
 z[i] = x[i] * y[i];"
 }"
 z[i] = x[i] + y[i]"
}"
for (int i=1; i<n; i++) {"
 w[i] = x[i] * y[i]"
}"

z[0] = x[0] * y[0];"
for (int i=1; i<n; i++) {"
 z[i] = x[i] + y[i]"
 w[i] = x[i] * y[i]"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop unrolling!
!Loop body is replicated and the stride is modified accordingly. This optimization

can help the processor make better use of arithmetic functional units.!

for (int i=0; i<1024; i++) {"
 z[i] = x[i] + y[i]"
}"

for (int i=0; i<1024; i+=4) {"
 z[i] = x[i] + y[i]"
 z[i+1] = x[i+1] + y[i+1]"
 z[i+2] = x[i+2] + y[i+2]"
 z[i+3] = x[i+3] + y[i+3]"
}"

Note that this example is particularly simple since the loop count is divisible by
the unrolling depth. In general, you’ll need to write cleanup code to handle the
leftover iterations (remainder of n/depth).!
You will rarely beat the compiler and manual loop unrolling will make your code
ugly and difficult to maintain. Best choice for unrolling depth may be processor
architecture dependent.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop unrolling!
!Although you’ll rarely beat the compiler, sometimes you’ll encounter a loop that

is too complex for it to accurately analyze. Below is an example where manual
loop unrolling by 4x did better than the compiler (original loop shown)!

do i=0,4319,2 ! Unrolled loop à i=0,4319,8"
 j0=mg63_miijj(0,i)"
 j1=mg63_miijj(1,i)"
 j2=mg63_miijj(2,i)"
 i0=mg63_miijj(3,i)"
 i1=mg63_miijj(4,i)"
 i2=mg63_miijj(5,i)"
 i3=mg63_miijj(6,i)"
 pvi3jj(1) = pvi3jj(1) + d(i0,i1)*d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1)"
 pvi3jj(2) = pvi3jj(2) + d(i0,i1)*d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1)"
 pvi3jj(3) = pvi3jj(3) + d(i0,i1)*d(i1,i2)*d(i1,i3)*d(i0,j0)*d(i0,j1)"
 ..."
 pvi3jj(22) = pvi3jj(22) + d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)"
 pvi3jj(23) = pvi3jj(23) + d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)"
 pvi3jj(24) = pvi3jj(24) + d(i0,i2)*d(i2,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)"
enddo"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Breaking out of loop early!
!Look for opportunities to break out of a loop early. This will generally require that

you understand the semantics of your code!

for (int i=0; i<n; i++) {"
 if (y[i] < const) {"
 // Do stuff"
 }"
}"

for (int i=0; i<n; i++) {"
 if (y[i] >= const) {"
 break;"
 } else {"
 // Do stuff"
 }"
}"

In this simple example (taken from real-life application), I used my knowledge
that the elements of array y are monotonically increasing (y[0] ≤ y[1] ≤ y[2] ≤
y[3] …). The compiler only understands the syntax of your code and cannot
safely do this optimization for you.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short loop optimizations!
!If you expect that a loop body may be executed for a small number of iterations,

can generate specific code for special cases.!

for (dm=0; dm<num_dm; dm++) {"
 df = ngc[p][dm] – nd[i][dm];"
 dist = dist + df*df;"
}"

switch(num_dm)"
"
case 1:"
 df0 = ngc[p][0] - nd[i][0];"
 dist = df0*df0;"
 break;"
"
case 2:"
 df0 = ngc[p][0] - nd[i][0];"
 df1 = ngc[p][0] - nd[i][0];"
 dist = df0*df0 + df1*df1;"
 break;"
"
[Additional cases]"
"
default:"
 for (dm=0; dm<num_dm; dm++) {"
 df = ngc[p][dm] – nd[i][dm];"
 dist = dist + df*df;"
 }"
 break;"
"
"

Note - stripped down example taken from flow
cytometry clustering code. In full application,
loop is nested within two additional loops. May
not have obtained much speedup as shown!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Non cache/loop optimizations!
!

•  Although there is some overlap between loop and non-loop
optimizations, these techniques are generally applied at the statement
or whole program level.!

•  The compiler can do some of these for you (e.g. constant propagation).
Others, such as force reduction and (especially) inter-procedural
optimization will usually require that the programmer modify the code.!

•  Unless it makes your code excessively difficult to read or maintain,
suggest that you do these yourself. Will avoid surprises when using
different versions of compilers or optimization levels.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Obviousness alert!!
!Some of the things that I’ll be discussing in this presentation are

completely obvious. That said, they’re still worth pointing out since they
are often overlooked and only become obvious after the fact !

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Constant folding!
!Compiler recognizes constant expressions and evaluates at compile time

rather than performing operations at run time. These are trivial for the
compiler and there’s no reason to do them yourself, especially if the
original code is easier to understand!

double precision pi = 2.0d0 * acos(0.0d0)"
double precision e = exp(1.0d0)"
integer gib = 2**30"
"
"
"
"
double precision pi = 3.14159265358979"
double precision e = 2.71828182845904"
integer gib = 1073741824"
"
"
"
"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Constant propagation!
!Constants are propagated at run time into other expressions that depend

on them. Trivial for the compiler to do these, no reason to implement
manually if it makes code more difficult to read.!

int x = 17;"
int y = x + 12 – 3;"
int z = x + y;"
"
"
"
"
int x = 17;"
int y = 26;"
int z = 43;"
"
"
"
"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

If the compiler does this, why are we even
talking about it here?!

!Constant folding and propagation depend on the compiler having enough
information to do the optimizations. If your program uses constants, be
sure to code them explicitly.!

myfunc(17);"
..."
void myfunc (int q) { "
 int x = q;"
 int y = q + 12 – 3;"
 int z = q + y;"
"
"
"
"

int x = 17;"
int y = 26;"
int z = 43;"
"
"
"
"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction!
!A force reduction optimization involves the replacement of an expensive

operation with a less expensive one.!

Exponentiation operations, especially floating point base raised to a
floating point power, are particular expensive. Look for opportunities to
replace with multiplications, particularly if the exponent is known at
compile time!

!pow(x,8.0) !à !x2 = x*x; x4 = x2*x2; x8 = x4*x4!
!pow(x,1.5) !à !y = x * sqrt(x)!

Fortran and newer versions of C++ overload the pow() function. Use
integer exponent whenever possible!

!double precision x,y !à !double precision x!
!x**y ! ! ! !integer n!
! ! ! ! !x**n!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction!
!

Operations involving trig functions can often be simplified by using the trig
identifies that you learned in high school. Just make sure that your
transformation apply to all quadrants if applicable!

!sin(x)*cos(x) ! !à !0.5 * sin(2*x)!
!sin(x)*cos(y)+cos(x)*sin(y) à !sin(x+y)!

!

If a and b are fixed and sum needs to be calculated repeatedly for many
values of x, can pre-calculate the constants c and phi.!

!a*sin(x) + b*cos(x) !à !c*sin(x+phi)!
! ! ! ! !c = sqrt(a*a + b*b)!
! ! ! ! !phi = atan2(b,a)!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction!
!

There are often hidden opportunities for force reductions. Look at logical
tests that can be written in a more efficient way. Think about what results
are really needed.!

count = 0;"
for (i=0; i<n; i++) {"
 if (log(x[i]) < c) {"
 count++;"
 }"
}"

count = 0;"
expc = exp(c)"
for (i=0; i<n; i++) {"
 if (x[i] < expc) {"
 count++;"
 }"
}"

In this example, we didn’t really need to know the logarithm of x[i] and we
could recast using a simple comparison to a pre-computed value.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction exercise!
!•  Copy the disttest.c file to your home directory. Program generates a set

of randomly distributed points in the unit square and calculates number
that are separated by less than a specified tolerance. Inspect the code
and make sure you understand logic.!

•  Compile program using the following options 
 
icc -O3 -o disttest disttest.c  
!

•  Run executables on Gordon compute node and keep track of run times
as reported by code. Try n=10000, 50000, 100000 and various values
for tolerance  
 
./disttest 50000 0.01!

•  Apply force reduction optimization to reduce the run time!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting!
!

Most imperative programming languages (MATLAB, Perl, Python, Java,
Fortran, C/C++) use short circuit evaluation for compound logical tests!

Disjunctions (‘OR’ tests) evaluate to TRUE once the first argument that
evaluates to TRUE is encountered!

Conjunctions (‘AND’ tests) evaluate to FALSE once the first argument
that evaluates to FALSE is encountered!

As a consequence, subsequent arguments are not evaluated once the
final result is known. We can take advantage of this to write more efficient
code.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting (disjunction)!
!

Some good rules of thumb for ordering arguments (P || Q)!

1.  If P and Q take roughly the same amount of time to evaluate, put the
argument that is more commonly TRUE first 
 
if (usually_true || usually_false) 
if (sin(x) > 0.01 || cos(y) < 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed  
!

2.  If P and Q are vastly different in the time required for evaluation, put
the faster test first 
 
if (fast_test || slow_test) 
if (x > y || pow(x,y)/atan2(w,z) > log(sqrt(x/y))!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting (conjunction)!
!

Some good rules of thumb for ordering arguments (P && Q)!

1.  If P and Q take roughly the same amount of time to evaluate, put the
argument that is more commonly FALSE first 
 
if (usually_false && usually_true) 
if (cos(y) < 0.01 && sin(x) > 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed  
!

2.  If P and Q are vastly different in the time required for evaluation, put
the faster test first 
 
if (fast_test && slow_test) 
if (x > y && pow(x,y)/atan2(w,z) > log(sqrt(x/y))!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid recalculating results!
!One of the easiest ways to reduce runtime is to avoid calculating a result

multiple times. Sometimes the compiler can recognize this and pre-
calculate the result!
!
Original ! ! ! !Compiler will probably do this!
a = w + x*x + sqrt(y) ! !temp = x*x + sqrt(y)!
b = z + x*x + sqrt(y) ! !a = w + temp!

! ! ! !b = z + temp!
!
For user defined function, compiler needs to be careful of side effects and
may not be able to safely perform the optimization!
a = w + x*x + myfunc(y) !// Did myfunc change a global variable?!
b = z + x*x + myfunc(y) !// Will the 2nd call return the same result?!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid recalculating results (cont.)!
!

Pre-calculating results can have an even bigger impact when the result is
calculated repeatedly in a loop body. This is know as a loop invariant
optimization!

"
for (i=0; i<n; i++) {"

"a[i] = b[i] + sqrt(c);"
}"

"

The compiler will generally recognize simple invariants and pull outside of
the loop. For the above example, the compiler will generate code like the
following!
"

sqrtc = sqrt(c);"
for (i=0; i<n; i++) {"

"a[i] = b[i] + sqrtc;"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimizations!
!

•  Until now, we’ve mostly been focusing on optimizations at the loop or
function level. More difficult are inter-procedural optimizations, which
require considering the application as a whole!

•  Compilers are great at optimizing loops (inversion, unrolling, fusion,
splitting, peeling ,etc.) and statements, but can rarely recognize
opportunities for inter-procedural optimizations.!

•  These generally require an intimate understanding of your code.!
•  Very often, this optimization requires that you recognize operations that

are repeated on the same set of data from one invocation of a function
to the next.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)!
!In a flow-cytometry code, noticed that a function was called five times in a

row with slightly different sets of arguments (diffs highlighted in red)!

Ei=get_avg_dist(rpc[temp_i], temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "
 "
Ej=get_avg_dist(rpc[temp_j], temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "
 "
E1=get_avg_dist(center_1, temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "
 "
E2=get_avg_dist(center_2, temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "
 "
E3=get_avg_dist(center_3, temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)!
!Within the get_avg_dist function, the key loops involve a comparison

between elements of population_ID and the scalars (temp_i, temp_j) to
decide which elements of norm_data are used for the calculations. Recall
that center is the only argument to change between calls and the same
elements of norm_data are used all five times!

for (i=0; i<file_Len; i++) {"
 if (population_ID[i]==temp_i || population_ID[i] ==temp_j) {"
 dist1 = center[d1] – norm_data[i][d1];"
 dist2 = center[d2] – norm_data[i][d2];"
 dist3 = center[d3] – norm_data[i][d3];"
 d = dist1*dist1 + dist2*dist2 + dist3*dist3;"
 if (d < radius) num_neighbors++"
}"

get_avg_dist(center, temp_i, temp_j, population_ID, "
num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c); "

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)!
!To avoid having to do the same tests five times in a row, do a “gather”

operation to collect elements of packed data into an array and pass as
argument to a modified get_avg_dist. Led to ~ 3x speedup of program.!

npacked = 0;"
for (i=0;i<file_Len;i++) {"
 if (population_ID[i]==temp_i || population_ID[i]==temp_j){"
 packed1[npacked] = norm_data[i][d1];"
 packed2[npacked] = norm_data[i][d2];"
 packed3[npacked] = norm_data[i][d3];"
 npacked++;"
 }"
}"

for (i=0; i<npacked; i++) {"
 dist1 = center[d1] – packed1[i];"
 dist2 = center[d2] – packed2[i];"
 dist3 = center[d3] – packed3[i];"
 d = dist1*dist1 + dist2*dist2 + dist3*dist3;"
 if (d < radius) num_neighbors++"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)!
!In Latent Dirichlet Allocation code (identifies topics in free text), profiling

shows that nearly all time spent in a single method!

int model::sampling(int m, int n) {"
int topic = z[m][n];"
int w = ptrndata->docs[m]->words[n];"
nw[w][topic] -= 1;"
nd[m][topic] -= 1;"
nwsum[topic] -= 1;"
ndsum[m] -= 1;"
"
for (int k = 0; k < K; k++) {"
 p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) * "
 (nd[m][k] + a) / (ndsum[m] + Ka); "
}"
"
nw[w][topic] += 1;"
nd[m][topic] += 1;"
nwsum[topic] += 1;"
ndsum[m] += 1;"
return topic;"

for (int m=0; m<M; m++) {"
 for (int n=0; n<N; n++) {"
 int topic = sampling(m,n);"
 z[m][n] = topic;"
 }"
}"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)!
!Note that sampling(m,n) called repeatedly with same value of m and that

only a few elements of nd, nwsum and ndsum are (temporarily) updated!

int model::sampling(int m, int n) {"
int topic = z[m][n];"
int w = ptrndata->docs[m]->words[n];"
nw[w][topic] -= 1;"
nd[m][topic] -= 1;"
nwsum[topic] -= 1;"
ndsum[m] -= 1;"
"
for (int k = 0; k < K; k++) {"
 p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) * !
 (nd[m][k] + a) / (ndsum[m] + Ka); !
}"
"
nw[w][topic] += 1;"
nd[m][topic] += 1;"
nwsum[topic] += 1;"
ndsum[m] += 1;"
return topic;"

for (int m=0; m<M; m++) {"
 for (int n=0; n<N; n++) {"
 int topic = sampling(m,n);"
 z[m][n] = topic;"
 }"
}"

Potential
invariants"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)!
!Pre-calculate array of values that do not change (much) across successive

calls to sampling and update only necessary elements!

int model::sampling(int m, int n) {"
int topic = z[m][n];"
nd[m][topic] -= 1;"
nwsum[topic] -= 1;"
f1[topic] = (nd[m][topic] + a) / "
 ((nwsum[topic] + Vb)*"
 (ndsum[m] - 1.0 + Ka));"
"
for (int k = 0; k < K; k++) {"
 p[k] = (nw[w][k] + b) * f1[k];"
}"
"
nd[m][topic] += 1;"
nwsum[topic] += 1;"
f1[topic] = ...;"

for (int m=0; m<M; m++) {"
 for (int k = 0; k < K; k++) {"
 f1[k] = (nd[m][k] + a) / "
 ((nwsum[k] + Vb)*"
 (ndsum[m] - 1.0 + Ka));"
 }  
 for (int n=0; n<N; n++) {"
 int topic = sampling(m,n);"
 z[m][n] = topic;"
 }"
}"
"

Entire application
is now 1.5-2.2x
faster, depending
on number of topics"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Unique optimizations!
!

•  Standard techniques will take you a long way, but sometimes you get
the biggest payoffs from novel, one-off optimizations!

•  These are also the most fun optimizations. To me, it’s like getting paid
to do brain ticklers!

•  Often requires a more intimate understanding of your application!
•  Once you’ve identified your hotspot, single-mindedly focus your efforts

on a better, faster solution!
•  Hard to provide concrete advice since the specific optimization tends to

be very problem specific. Here’s the best I can do:!
•  Be smart!
•  Even better, be clever!
•  Be obsessive!
•  Revisit your high school algebra, trig and geometry!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Approximate expensive function and redo
accurate calculation only when necessary!

!Fortran application was spending most of its time calculating inverse
cosine (acos) function. Result used in test that is rarely satisfied!
"

if (acos(xprod) < abs(xi-xj)) then"
 -- do some calculations --"
endif"

"

Google search found an inexpensive approximation (20x faster) to inverse
cosine (π/2 - Ax5 - Bx) with a known maximum error. Use for initial test and
recalculate acos only when needed. Note that this has no impact on final
results!
"

if(acos_approx(xprod) < abs(xi-xj) + max_err) then"
 if(acos(xprod) < abs(xi-xj) then"
 -- do some calculations --"
 endif"
endif"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs !
!Many problems in bioinformatics, statistical physics and other fields

require the calculation of log probabilities. The direct product over small
probabilities results in underflow, so we need to calculate sum over logs
instead!
!
!

Want log(pi
i=1

n

∏), but pi
i=1

n

∏ underflows

Instead, calculate log(pi
i=1

n

∑)

The downside is that the latter is n times more expensive. This can have a
big impact on performance if n is large and/or log probabilities are
frequently calculated!
!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs (cont.) !
!

To avoid the expensive logarithm calculations, first split arguments into
normalized fractions (1/2 ≤ x < 1) and powers of two. Can do this with the
very fast C frexp function. Then accumulate product over fractions, sum
over powers of two and do a little algebra at the end!
!
 5 x 17 x 37 = (0.625 x 23) x (0.53125 x 25) x (0.578125 x 26)!
 = (0.625 x 0.53125 x 0.578125) x 214!

 = 0.1919556 x 214!

 log(5 x 17 x 37) = log(0.1919556) + log(2.0) x 14 = 3.49762 ✔!
!

!
!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs (cont.) !
!

What if the product over fractions underflows? Multiply by constant to keep
product close to one and correct for this later. Assumes that the fractional
parts of the arguments are uniformly distributed between ½ and 1. Here’s
the final solution!
!
c=1.358858;"
sprod = 1.0;"
xsum = 0.0;"
"
for (i=0; i<n; i++) {"
 s = frexp(p[i], &x); // Split into fraction and power of 2"
 sprod *= (s * c); // Product over fractions, with correction"
 xsum += x; // Sum over powers of two"
}"
logsum = log(sprod) + log(2.0)*xsum - n*log(c);"

!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

log sum exercise!
!•  Copy the logsum.c file to your home directory. Program performs log

sum using both standard and optimized method. Inspect the code and
make sure you understand logic.!

•  Compile program using the following options 
 
gcc -O3 -o logsum_gcc logsum.c -lm 
icc -O3 -o logsum_icc logsum.c 
!

•  Run executables on Gordon compute node and keep track of run times
as reported by code. Try altering the following (line 15), but keeping
n*m constant!
•  n (number of contributions to log sum)!
•  m (number of trials)!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

log sum exercise!
!

•  Are there any noticeable differences between the timings for the
Intel (icc) and GNU (gcc) compilers?!

•  Did you notice any trends in the ratio of run times as a function
of problem size?!

•  If you noticed a difference between the compilers why do you
think this happened?!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Linear algebra - DSYRK!
!

After initial rounds of optimization, determined that application was spending most
of its time in the DSYRK linear algebra routine!
!

D ß αAAT + βD (A and C matrices, α and β and constants)!
!
Figured that there was no room left for improvement, then took a more careful look
at the way the matrix A is constructed from the concatenation of two matrices!
!

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

b11 b12 c11 c12
b21 b22 c21 c22
b31 b32 c31 c32
b41 b42 c41 c42

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= B C!
"

$
%

AAT = B C!
"

#
$ B C!
"

#
$
T
= B C!
"

#
$

BT

CT

!

"
%
%

#

$
&
&
= BBT +CCT

Rewrite A as
concatenation of
two matrices A
and B!

AAT can be
expressed as
BBT + CCT !

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Linear algebra - DSYRK (cont.)!
!

Further inspection revealed that the nested loops over indices provides
opportunities for pre-calculating the partial results (BBT, CCT) and replacing the
DSYRK call with a much faster matrix addition.!

Loop over i (i:n)"
 Xi ß BBT"

 Yi ß CCT"

Loop over i (i:n)"
 Loop over j (i:n)"
 R ß Xi + Yj"
 ..."

Loop over i (1:n)"
 Loop over j (1:n)"
 A ß [B C]"
 R ß DSYRK(A)"
 ..."

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

A few words about optimizing parallel codes!
!

•  Fast parallel codes depend on fast underlying serial algorithms!
•  We don’t have time to get into optimization of parallel algorithms, but

here are a few things to consider 
!

•  Address load balancing – make sure that each process or thread is
assigned the same amount of work (or at least as close as possible) 
!

•  Minimize communications overhead!
•  Try to overlap communication and computation!
•  Avoid unnecessary serialization or synchronization events!
•  Send fewer large message rather than more small messages!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Load balancing in OpenMP code!
!

#pragma omp parallel for"
for (i=0; i<n; i++) {"
 // All iterations take same amount of time"
}"
"
#pragma omp parallel for schedule(dynamic,n)"
for (i=0; i<n; i++) {"
 // Iterations take different times"
 // May need to experiment with “n”"
 // Use n=1 if orders of magnitude variation in run time"
}"
"

If all iterations take the same amount of time, static decomposition
is fine. Otherwise, consider dynamic assignment of work.!

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid serialization in OpenMP code!
!

#pragma omp parallel for"
for (i=0; i<n; i++) {"
 y[i] = x[i] + w[i]*z[i];"
 #pragma omp critical"
 ysum += y[i]"
}"

Look for ways to avoid synchronization events in loops. Consider
reduction variables or restructuring of logic!

All other threads are idle
waiting for the active thread
to exit the critical region"

#pragma omp parallel for reduction(+:ysum)"
for (i=0; i<n; i++) {"
 y[i] = x[i] + w[i]*z[i];"
 ysum += y[i]"
}"

Code will be generated to
calculate partial sums and
collect results after loop"

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid synchronization in MPI code!
!

Do_some_work;!
MPI_Barrier(MPI_COMM_WORLD);!
Do_some_more_work;!
MPI_Barrier(MPI_COMM_WORLD);!
Do_some_more_work;!
"
"

Think about whether or not synchronization is really needed!

Will removing these
change my results?"

